Histone H1 Interacts Preferentially with DNA Fragments Containing a Cisplatin-Induced 1.2-Intrastrand Cross-Link

Julia N. Yaneva^a, Elena G. Paneva^a, Siyka I. Zacharieva^b, and Jordanka Zlatanova^c,*

- ^a Department of Gene Regulations, Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Department of Immunology, Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- ^c Department of Molecular Biology, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, USA. E-mail: jordanka@uwyo.edu
- * Author for correspondence and reprint requests
- Z. Naturforsch. **62c**, 905–908 (2007); received July 20, 2007

Cisplatin [cis-diamminedichloroplatinum(II) or cis-DDP, but not its stereoisomer transplatin, is suggested to be among the most powerful anticancer agents. It is believed that its therapeutic activity results from its interaction with DNA forming intra- and interstrand crosslinks. During our earlier investigations, we have observed a prominent preference of the linker histone H1 for binding to *cis*-platinated DNA (containing several different cross-links along the DNA fragment) compared with unmodified or transplatin-modified DNA. This report presents our recent experimental data obtained by band-shift analysis on the binding of H1 to a cisplatin-modified synthetic 34 bp DNA fragment containing a single target d(GG/CC) for 1,2 cis-intra-platination. Results obtained with another nuclear protein with similar DNA-binding properties, HMGB1, are also presented. The experimental data throw light on the precise preference of histone H1 for binding to different types of cisplatin-created cross-links in DNA.

Key words: Cisplatin, DNA, Histone H1